Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169267, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092205

RESUMO

The Olympia oyster, Ostrea lurida, is the target of many restoration projects along estuaries on the North American Pacific coast, while the non-native Pacific oyster, Magallana gigas, dominates oyster aquaculture globally. Both species provide filtration functions that were investigated in three California bays using a whole-habitat, in situ approach, a laboratory particle selection experiment, and a regional physiological comparison. Measurements of chlorophyll α, temperature, salinity, and turbidity upstream and downstream, as well as point samples of seston total particulate matter and organic content to estimate habitat clearance rates (HCR, L hr-1 m-2) were collected. From February 2018 to June 2019, twenty-two trials were conducted across four sites. HCRs were highly variable within and among sites, ranging from site averages of -464 to 166 L hr-1 m-2, and not significantly different among sites, indicating field filtration performance of O. lurida habitat and M. gigas aquaculture is similar. Using a random forest regression, site was the most important predictor of HCR, with a variable importance score of 25.7 % (SD = 4.6 %). O. lurida and M. gigas had significantly different particle size selection preferences, likely affecting the quality of their filtration. This study's findings suggest that restoring O. lurida habitat may provide similar filtration benefits as M. gigas aquaculture, but the unique hydrodynamics and food quality of individual bays, as well as regional differences in filter feeder communities, must be considered in managing oyster habitat for filtration functions.


Assuntos
Crassostrea , Ligas de Ouro , Ostrea , Animais , Estuários , Tamanho da Partícula , Ecossistema , América do Norte
2.
Ecology ; 97(12): 3503-3516, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912012

RESUMO

Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure was correlated with lower summer water temperature, higher winter salinity, and shorter residence time: all indicators of stronger marine influence on estuaries. Recruitment failure was also more common in estuaries with limited networks of nearby adult oysters. Large existing oyster networks are thus of high conservation value, while estuaries that lack them would benefit from restoration efforts to increase the extent and connectivity of sites supporting oysters.


Assuntos
Ostreidae/fisiologia , Distribuição Animal , Animais , Canadá , Oceano Pacífico , Dinâmica Populacional , Estados Unidos
3.
Proc Biol Sci ; 277(1688): 1685-94, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20133354

RESUMO

Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management.


Assuntos
Genética Populacional , Biologia Marinha , Caramujos , Movimentos da Água , Animais , Ecossistema , Larva/crescimento & desenvolvimento , Oceanografia , Oceanos e Mares , Dinâmica Populacional , Caramujos/genética , Caramujos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...